Investigation of Trinucleotide Repeat Structure in Nucleosome Core Particles
نویسندگان
چکیده
منابع مشابه
Bilayers of nucleosome core particles.
Among the multiple effects involved in chromatin condensation and decondensation processes, interactions between nucleosome core particles are suspected to play a crucial role. We analyze them in the absence of linker DNA and added proteins, after the self-assembly of isolated nucleosome core particles under controlled ionic conditions. We describe an original lamellar mesophase forming tubules...
متن کاملStructure of nucleosome core particles containing uH2A (A24).
We have purified uH2A (A24) and reconstituted it, in place of H2A, into high molecular weight nucleohistone containing the core histones and DNA. uH2A-containing core particles were then prepared by nuclease digestion and studies on these particles were carried out. We show that two uH2A molecules can be accommodated within a core particle. We also show that the presence of two uH2A molecules i...
متن کاملPhase diagram of nucleosome core particles.
We present a phase diagram of the nucleosome core particle (NCP) as a function of the monovalent salt concentration and applied osmotic pressure. Above a critical pressure, NCPs stack on top of each other to form columns that further organize into multiple columnar phases. An isotropic (and in some cases a nematic) phase of columns is observed in the moderate pressure range. Under higher pressu...
متن کاملTail-induced attraction between nucleosome core particles.
We study a possible electrostatic mechanism underlying the compaction of DNA inside the nuclei of eucaryotes: the tail-bridging effect between nucleosomes, the fundamental DNA packaging units of the chromatin complex. As a simple model of the nucleosome we introduce the eight-tail colloid, a charged sphere with eight oppositely charged, flexible, grafted chains that represent the terminal histo...
متن کاملHelical repeat of DNA in the nucleosome core particle.
Although the crystal structure of nucleosome core particle is essentially symmetrical in the vicinity of the dyad, the linker histone binds asymmetrically in this region to select a single high-affinity site from potentially two equivalent sites. To try to resolve this apparent paradox we mapped to base-pair resolution the dyads and rotational settings of nucleosome core particles reassembled o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2011
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2010.12.1499